Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology.
Only write on one side of each page.
"The one real object of education is to have a man in the condition of continually asking questions." -Bishop Mandell Creighton

Problems

1. Do all of the following.
(a) \#11, 14, 21, 22b, 22d of Judson Chapter 1 (Pages 16,17)
2. Let $f: X \longrightarrow Y$ be a map of sets with $A_{1}, A_{2} \subset X$ and $B_{1}, B_{2} \subset Y$.

Do all of the following
(a) Prove $f\left(A_{1} \cap A_{2}\right) \subset f\left(A_{1}\right) \cap f\left(A_{2}\right)$ and give an example where equality fails.
(b) Prove $f^{-1}\left(B_{1} \cup B_{2}\right)=f^{-1}\left(B_{1}\right) \cup f^{-1}\left(B_{2}\right)$
(c) Prove $f^{-1}\left(Y \backslash B_{1}\right)=X \backslash f^{-1}\left(B_{1}\right)$
(d) Look at problem 24 of Chapter 1 of Judson and note that, in general, inverse images behave 'nicely' with respect to intersections but not so nicely under unions.
3. Let $f: A \longrightarrow B$ be a surjective map of sets.
(a) Prove that the relation defined by $a \sim b$ if and only if $f(a)=f(b)$ is an equivalence relation.
(b) Prove that the equivalence classes of this relation are the fibers of f.

