
Conceptual Review

5.1-5.4, 8.1 and bits of 8.2

Interval and Discrete Domain Analogies
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[F (x)] = f (x) then
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Mixing Interval and Discrete Domain Functions, Part 1

Approximating areas under, average value of, or other properties of interval domain
functions

• Start with a continuous function on an interval [a, b] .

• Partition the interval into n subintervals (which need not be the same size) using P =
{a = x0, x1, · · · , xn = b} .

• Use notation: [xk−1, xk] is the kth subinterval, ∆xk is the length of [xk−1, xk], and ‖P‖ is the
length of the longest subinterval

• Select one point ck in the k th subinterval for k = 1, 2, · · · , n

• Form the sequence a (k) = f (ck) ∆xk

• Form the finite sum (discrete antiderivative)
∑n

k=1 f (ck) ∆xk

• Determine the limit lim‖P‖→∞
∑n

k=1 f (ck) ∆xk (By a theorem proven in advanced calculus,
MATH 321, the limit is guaranteed to exist if f is continuous and the limit does not depend
on which partitions P you use or on how you select points ck in the subintervals ).

• This limit gives an exact value, not an approximation, and is abbreviated with the notation∫ b
a f (x) dx.
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Fundamental Theorem of Calculus

• Part 1 of the Fundamental Theorem of Calculus tells us that every continuous function is
guaranteed to have an antiderivative. Specifically,

∫ x
a f (t) dt is an antiderivative of f (x).

• Part 2 of the Fundamental Theorem of Calculus gives us a computational shortcut for com-
puting the limit: lim‖P‖→∞

∑n
k=1 f (ck) ∆xk. It requires that we know an antiderivative F (x)

of f (x) , but if we do, then
∫ b
a f (x) = lim‖P‖→∞

∑n
k=1 f (ck) ∆xk = F (b) − F (a).
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