Conceptual Review

5.1-5.4, 8.1 and bits of 8.2

Interval and Discrete Domain Analogies

$n^{\underline{p}}=\frac{n!}{p!}=n(n-1)(n-2) \cdots(n-p+1)$		
$D_{n}\left[n^{p}\right]=p n^{p-1}$		$\frac{d}{d x}\left[x^{n}\right]=n x^{n-1}$
$D_{n}\left[n^{-\underline{p}}\right]=-p(n+1)^{-p-1}$		$\frac{d}{d x}\left[x^{-n}\right]=-n x^{-n-1}$
$D_{n}\left[r^{n}\right]=(r-1) r^{n}$		$\frac{d}{d x}\left[a^{x}\right]=\ln (a) a^{x}$
$\sum n^{\underline{p}}=\frac{1}{p+1} n^{p+1}+C$		$\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C$
$\sum_{n} n^{-\underline{p}}=\frac{1}{-p+1}(n-1)^{-p+1}+C$, if $p \neq 1$		$\int x^{-n} d x=\frac{1}{-n+1} x^{-n+1}+C$, if $n \neq 1$
$\sum_{r} r^{k}=\frac{1}{r-1} r^{k}+C, r \neq 1$		$\int r^{x} d x=\frac{1}{\ln (r)} r^{x}+C, r \neq 1$
$\sum_{k=1}^{n} 1=n$		$\int_{a}^{b} 1 d x=b-a$
$\sum_{k=1}^{n} k=\frac{1}{2} n(n+1)$		$\int_{a}^{b} x d x=\frac{1}{2}\left(b^{2}-a^{2}\right)$
$\sum_{k=1}^{n} k^{2}=\frac{1}{6} n(n+1)(2 n+1)$		$\int_{a}^{b} x^{2} d x=\frac{1}{3}\left(b^{3}-a^{3}\right)$
$\sum_{k=1}^{n} k^{3}=\frac{1}{4} n^{2}(n+1)^{2}$		$\int_{a}^{b} x^{3} d x=\frac{1}{4}\left(b^{4}-a^{4}\right)$
$D_{n}\left[\sum_{k=m}^{n-1} a(k)\right]=a(n)$	1 st FT	$\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)$
If $D_{n}[A(n)]=a(n), \sum_{k=m}^{n} a(k)=A(n+1)-A(m)$	2nd FT	If $\frac{d}{d x}[F(x)]=f(x)$ then $\int_{a}^{b} f(x) d x=$

Mixing Interval and Discrete Domain Functions, Part 1

Approximating areas under, average value of, or other properties of interval domain functions

- Start with a continuous function on an interval $[a, b]$.
- Partition the interval into n subintervals (which need not be the same size) using $P=$ $\left\{a=x_{0}, x_{1}, \cdots, x_{n}=b\right\}$.
- Use notation: $\left[x_{k-1}, x_{k}\right]$ is the k th subinterval, Δx_{k} is the length of $\left[x_{k-1}, x_{k}\right]$, and $\|P\|$ is the length of the longest subinterval
- Select one point c_{k} in the k th subinterval for $k=1,2, \cdots, n$
- Form the sequence $a(k)=f\left(c_{k}\right) \Delta x_{k}$
- Form the finite sum (discrete antiderivative) $\sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k}$
- Determine the limit $\lim _{\|P\| \rightarrow \infty} \sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k}$ (By a theorem proven in advanced calculus, MATH 321, the limit is guaranteed to exist if f is continuous and the limit does not depend on which partitions P you use or on how you select points c_{k} in the subintervals).
- This limit gives an exact value, not an approximation, and is abbreviated with the notation $\int_{a}^{b} f(x) d x$.

Fundamental Theorem of Calculus

- Part 1 of the Fundamental Theorem of Calculus tells us that every continuous function is guaranteed to have an antiderivative. Specifically, $\int_{a}^{x} f(t) d t$ is an antiderivative of $f(x)$.
- Part 2 of the Fundamental Theorem of Calculus gives us a computational shortcut for computing the limit: $\lim _{\|P\| \rightarrow \infty} \sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k}$. It requires that we know an antiderivative $F(x)$ of $f(x)$, but if we do, then $\int_{a}^{b} f(x)=\lim _{\|P\| \rightarrow \infty} \sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k}=F(b)-F(a)$.

