Not to be turned in

Name

Be sure to re-read the WRITING GUIDELINES rubric, since it defines how your project will be graded. In particular, you may discuss this project with others but you may not collaborate on the written exposition of the solution.
" 'Know thyself?' If I knew myself, I'd run away." - Johann von Goethe
Do two (2) of the following.

1. If it is possible, how should the coefficients a, b, and c be chosen so the system below has solution set $\left\{\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]\right\}$?

$$
\begin{aligned}
a x+b y+c z & =3 \\
a x-y+c z & =1 \\
x+b y-c z & =2
\end{aligned}
$$

2. Suppose A is an $m \times n$ matrix and I_{m} is the $m \times m$ identity matrix. Let E be the matrix obtained by performing a single elementary row operation on I_{m}. We call any such matrix E an elementary matrix of size m and we use ($E A$) to denote the matrix obtained by performing the same elementary row operation that is encoded by E on matrix A. Prove that if A is a nonsingular $m \times m$ matrix, then there is a sequence of elementary matrices $E_{1}, E_{2}, \cdots, E_{n}$ for which $A=\left(E_{n} \cdots\left(E_{3}\left(E_{2}\left(E_{1} I_{m}\right)\right)\right) \cdots\right)$
3. Consider the 2×2 system of equations

$$
\begin{aligned}
& a x_{1}+b x_{2}=f_{1} \\
& c x_{1}+d x_{2}=f_{2} .
\end{aligned}
$$

(a) Show that if $a d-b c \neq 0$, then this system is consistent and has exactly one solution. [Hint: be careful. You can't divide by a unless you know it is not zero.]
(b) Show that if $a d-b c=0$,this system can not have exactly one solution. [Hint: try to remove a variable using row operations that do not include division.]

