Due October 1

Name

Directions: Be sure to follow the guidelines for writing up projects as specified in the course information sheet (passed out on the first day of class). Whenever appropriate, use in-line citations, including page numbers and people consulted when you present information obtained from discussion, a text, notes, or technology. Only write on one side of each page.
"Personally, I'm always ready to learn, although I do not always like being taught." - Winston Churchill

Project Description

Do both of the following.

1. Show that the function $z=x e^{y}+y e^{x}$ is a solution of the partial differential equation

$$
\frac{\partial^{3} z}{\partial x^{3}}+\frac{\partial^{3} z}{\partial y^{3}}=x \frac{\partial^{3} z}{\partial x \partial y^{2}}+y \frac{\partial^{3} z}{\partial^{2} x \partial y}
$$

2. If f and all of its partial derivatives are continuous and satisfy the inequalities below, describe the shape of the surface that is the graph of $z=f(x, y)$ near $(a, b, f(a, b))$ as completely as you can.

$$
\begin{aligned}
f_{x}(a, b) & >0 \\
f_{y}(a, b) & <0 \\
f_{x x}(a, b) & <0 \\
f_{x y}(a, b) & >0 \\
f_{y y}(a, b) & >0 .
\end{aligned}
$$

