Due October 21

Name

Directions: Be sure to follow the guidelines for writing up projects as specified in the course information sheet (passed out on the first day of class). Whenever appropriate, use in-line citations, including page numbers and people consulted when you present information obtained from discussion, a text, notes, or technology. Only write on one side of each page.
"I never know how much of what I say is true." - Bette Midler

0.1 Project Description

Do one (1) of the following. All problems are "computational" but the last one requires more attention to details.

1. Do both of the following:
(a) Assume that all functions are differentiable. If $z=f(x, y)$, where $x=r \cos \theta$, and $y=\sin \theta$, find

$$
\frac{\partial z}{\partial r}, \frac{\partial z}{\partial \theta} \text { and } \frac{\partial^{2} z}{\partial r \partial \theta}
$$

(b) Assume that all functions are differentiable. Show that any function of the form

$$
z=f(x+a t)+g(x-a t)
$$

is a solution of the wave equation

$$
\frac{\partial^{2} z}{\partial t^{2}}=a^{2} \frac{\partial^{2} z}{\partial x^{2}}
$$

2. Suppose $z=f(x, y)$ is a function on two intermediate variables and $x=x(s, t), y=y(s, t)$ are functions on two independent variables s, t. Derive the formula for

$$
\frac{\partial^{2} z}{\partial t \partial s}
$$

[Recall that $\frac{\partial^{2} z}{\partial t \partial s}=f_{s t}(x, y)$.]

