
        Name: _________________________ 
 

Computer Science II — Fall 2021 
Exam #2 

 
This exam should have five pages.  Closed book and notes.   

No computers or calculators allowed. 
 
 
Problem 1: [20 points] 

Below is some mysterious code that makes use of a stack. Describe briefly in English what the 
mystery method does. What would be a good, descriptive name for this method?  

 
    public static void mystery(Stack<Integer> s) { 
        if (!s.isEmpty()) { 
            int top = s.pop(); 
            mystery(s); 
            if (top > 0) { 
                s.push(top); 
            } 
        } 
    } 
  



 
 
Problem 2:  [26 points] 

 

 
 
 

a) The linked structure above uses the node and die classes developed in class, and used on 
Lab #5. Write code below that will remove the node containing the eight-sided die from 
the list by linking around it. You may declare additional variables of type Node if you 
wish, but assignments to them must be made through head. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b) On the diagram above, draw in the changes that would result from executing the 
following assignment statements. (Start with the original structure, rather than the 
modified list produced by your changes in part a.)  

Node temp = head.next.next; 
temp.next.data = head.data;  
temp.next = head;  

  



 
Problem 3: [26 points] 
 
The collide method you implemented on Assignment #4 returned a queue of integers rep-
resenting asteroids that survived the simulated collisions. (Negative values represented left-
moving asteroids, and positive values were right moving.) If the method worked correctly, there 
should never be asteroids in its output that would collide. Below, define a static method called 
noCollisions that could be used to verify this. It should take a Queue of Integers as its 
input and return true if there are no collisions, or false if a collision would occur between 
asteroids in the queue. A portion of the Queue documentation is at the end of the exam. Feel free 
to remove that page for reference. (Hint: What must be true of neighboring items in the queue if 

  
there would be a collision?) 



 
public static List<Integer> evens(List<Integer> nums) { 
    if (nums.size() == 0) {          
        return new LinkedList<Integer>();  
    } 
    else { 
        int firstItem = nums.get(0); 
        nums.remove(0); 
        List<Integer> evensFromTail = evens(nums); 
        if (firstItem % 2 == 0) { 
            evensFromTail.add(0, firstItem); 
        } 
        return evensFromTail;             
    } 
} 
 
Problem 4: [28 points] 
 
We wrote the recursive method above in class. It takes a list of integers and returns a new list 
containing just the even numbers from the input list. 
 

a) What kind of input list does it take? ArrayList? LinkedList? Other? 
 
 
 
 
 
 

b) Assume that you could choose what kind of list it could take as input. Would the Big-O 
complexity be different if it took an ArrayList versus a LinkedList? If so, which would be 
more efficient? Explain your answer. 

 
 
 
 
 
 

c) What kind of output list does it produce? ArrayList? LinkedList? Other? 
 
 
 
 
 
 

d) Assume that you could choose what kind of output list was produced. Would the Big-O 
complexity be different if it produced an ArrayList versus a LinkedList? If so, which would 
be more efficient? Explain your answer. 
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