Name:

Computer Science Il — Fall 2021
Exam #2

This exam should have five pages. Closed book and notes.
No computers or calculators allowed.

Problem 1: [20 points]

Below is some mysterious code that makes use of a stack. Describe briefly in English what the
mystery method does. What would be a good, descriptive name for this method?

public static void mystery(Stack<Integer> s) {
if (!s.isEmpty()) {
int top = s.pop();
mystery(s);
if (top > 0) {
s.push(top);
}

Problem 2: [26 points]

BasicDie BasicDie BasicDie BasicDie

numSides numSides
6]

numSides

head

a) The linked structure above uses the node and die classes developed in class, and used on
Lab #5. Write code below that will remove the node containing the eight-sided die from
the list by linking around it. You may declare additional variables of type Node if you
wish, but assignments to them must be made through head.

b) On the diagram above, draw in the changes that would result from executing the
following assignment statements. (Start with the original structure, rather than the
modified list produced by your changes in part a.)

Node temp = head.next.next;
temp.next.data = head.data;
temp.next = head;

Problem 3: [26 points]

The collide method you implemented on Assignment #4 returned a queue of integers rep-
resenting asteroids that survived the simulated collisions. (Negative values represented left-
moving asteroids, and positive values were right moving.) If the method worked correctly, there
should never be asteroids in its output that would collide. Below, define a static method called
noCollisions that could be used to verify this. It should take a Queue of Integers as its
input and return true if there are no collisions, or false if a collision would occur between
asteroids in the queue. A portion of the Queue documentation is at the end of the exam. Feel free
to remove that page for reference. (Hint: What must be true of neighboring items in the queue if
there would be a collision?)

public static List<Integer> evens(List<Integer> nums) {
if (nums.size() == 0) {
return new LinkedList<Integer>();

}

else {
int firstItem = nums.get(0);
nums.remove(0);
List<Integer> evensFromTail = evens(nums);
if (firstItem % 2 == 0) {

evensFromTail.add (0, firstItem);

}
return evensFromTail;

}

}

Problem 4: [28 points]

We wrote the recursive method above in class. It takes a list of integers and returns a new list
containing just the even numbers from the input list.

a) What kind of input list does it take? ArrayList? LinkedList? Other?

b) Assume that you could choose what kind of list it could take as input. Would the Big-O
complexity be different if it took an ArrayList versus a LinkedList? If so, which would be
more efficient? Explain your answer.

c) What kind of output list does it produce? ArrayList? LinkedList? Other?

d) Assume that you could choose what kind of output list was produced. Would the Big-O
complexity be different if it produced an ArrayList versus a LinkedList? If so, which would
be more efficient? Explain your answer.

Java™ Platform

Overview Package Use Tree Deprecated Index Help
Standard Ed. 6

PREV CLASS NEXT CLASS

FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.util

Interface Queue<E>

Type Parameters:
E - the type of elements held in this collection

All Superinterfaces:
Collection<E>, Iterable<E>

All Known Subinterfaces:
BlockingDeque<E>, BlockingQueue<E>, Deque<E>

All Known Implementing Classes:
AbstractQueue, ArrayBlockingQueue, ArrayDeque, ConcurrentlinkedQueue, DelayQueue,

SynchronousQueue

public interface Queue<E>
extends Collection<E>

A collection designed for holding elements prior to processing. Besides basic collection operations, queues
provide additional insertion, extraction, and inspection operations. Each of these methods exists in two forms:
one throws an exception if the operation fails, the other returns a special value (either null or false,
depending on the operation). The latter form of the insert operation is designed specifically for use with
capacity-restricted Queue implementations; in most implementations, insert operations cannot fail.

Throws exception | Returns special value
Insert |add(e) offer(e)
Remove |remove (). poll().
Examine |element (). peek ().

Queues typically, but do not necessarily, order elements in a FIFO (first-in-first-out) manner. Among the
exceptions are priority queues, which order elements according to a supplied comparator, or the elements'
natural ordering, and LIFO queues (or stacks) which order the elements LIFO (last-in-first-out). Whatever the
ordering used, the head of the queue is that element which would be removed by a call to remove (). or

poll (). In a FIFO queue, all new elements are inserted at the fail of the queue. Other kinds of queues may
use different placement rules. Every gueue implementation must specify its ordering properties.

The offer method inserts an element if possible, otherwise returning false. This differs from the
Collection.add method, which can fail to add an element only by throwing an unchecked exception. The
offer method is designed for use when failure is a normal, rather than exceptional occurrence, for example,
in fixed-capacity (or "bounded") queues.

The remove (). and poll (). methods remove and return the head of the queue. Exactly which element is
removed from the queue is a function of the queue's ordering policy, which differs from implementation to
implementation. The remove () and pol1 () methods differ only in their behavior when the queue is empty:
the remove () method throws an exception, while the po11 () method returns null.

The element () and peek () methods return, but do not remove, the head of the queue.

The gueue interface does not define the blocking queue methods, which are common in concurrent
programming. These methods, which wait for elements to appear or for space to become available, are
defined in the Blockinggueue interface, which extends this interface.

Queue implementations generally do not allow insertion of null elements, although some implementations,
such as LinkedList, do not prohibit insertion of nu11. Even in the implementations that permit it, null
should not be inserted into a Queue, as null is also used as a special return value by the po11 method to
indicate that the queue contains no elements.

oueue implementations generally do not define element-based versions of methods equals and hashcode but
instead inherit the identity based versions from class object, because element-based equality is not always
well-defined for queues with the same elements but different ordering properties.

This interface is a member of the Java Collections Framework.

Since:
1.5
See Also:

Method Summary

boolean add(E e)

Inserts the specified element into this queue if it is possible to do so immediately without
violating capacity restrictions, returning true upon success and throwing an
IllegalStateException if no space is currently available.

[l

element ()
Retrieves, but does not remove, the head of this queue.

boolean offer(E e)
Inserts the specified element into this queue if it is possible to do so immediately without
violating capacity restrictions.

E
= |peek()

Retrieves, but does not remove, the head of this queue, or returns null if this queue is
empty.

E
£|poll()
Retrieves and removes the head of this queue, or returns null if this queue is empty.

I

remove()
Retrieves and removes the head of this queue.

