
 Name: _________________________

Computer Science II — Fall 2021
Exam #2

This exam should have five pages. Closed book and notes.

No computers or calculators allowed.

Problem 1: [20 points]

Below is some mysterious code that makes use of a stack. Describe briefly in English what the
mystery method does. What would be a good, descriptive name for this method?

 public static void mystery(Stack<Integer> s) {
 if (!s.isEmpty()) {
 int top = s.pop();
 mystery(s);
 if (top > 0) {
 s.push(top);
 }
 }
 }

Problem 2: [26 points]

a) The linked structure above uses the node and die classes developed in class, and used on
Lab #5. Write code below that will remove the node containing the eight-sided die from
the list by linking around it. You may declare additional variables of type Node if you
wish, but assignments to them must be made through head.

b) On the diagram above, draw in the changes that would result from executing the
following assignment statements. (Start with the original structure, rather than the
modified list produced by your changes in part a.)

Node temp = head.next.next;
temp.next.data = head.data;
temp.next = head;

Problem 3: [26 points]

The collide method you implemented on Assignment #4 returned a queue of integers rep-
resenting asteroids that survived the simulated collisions. (Negative values represented left-
moving asteroids, and positive values were right moving.) If the method worked correctly, there
should never be asteroids in its output that would collide. Below, define a static method called
noCollisions that could be used to verify this. It should take a Queue of Integers as its
input and return true if there are no collisions, or false if a collision would occur between
asteroids in the queue. A portion of the Queue documentation is at the end of the exam. Feel free
to remove that page for reference. (Hint: What must be true of neighboring items in the queue if

there would be a collision?)

public static List<Integer> evens(List<Integer> nums) {
 if (nums.size() == 0) {
 return new LinkedList<Integer>();
 }
 else {
 int firstItem = nums.get(0);
 nums.remove(0);
 List<Integer> evensFromTail = evens(nums);
 if (firstItem % 2 == 0) {
 evensFromTail.add(0, firstItem);
 }
 return evensFromTail;
 }
}

Problem 4: [28 points]

We wrote the recursive method above in class. It takes a list of integers and returns a new list
containing just the even numbers from the input list.

a) What kind of input list does it take? ArrayList? LinkedList? Other?

b) Assume that you could choose what kind of list it could take as input. Would the Big-O
complexity be different if it took an ArrayList versus a LinkedList? If so, which would be
more efficient? Explain your answer.

c) What kind of output list does it produce? ArrayList? LinkedList? Other?

d) Assume that you could choose what kind of output list was produced. Would the Big-O
complexity be different if it produced an ArrayList versus a LinkedList? If so, which would
be more efficient? Explain your answer.

O
verview

 Package Class Use Tree Deprecated Index Help
Java™

 P
latform

Java™
 P

latform
Standard E

d. 6
Standard E

d. 6
 PREV CLASS NEXT CLASS

FRAM
ES NO

 FRAM
ES

SUM
M

ARY: NESTED | FIELD | CO
NSTR | M

ETHO
D

DETAIL: FIELD | CO
NSTR | M

ETHO
D

java.util
Interface Q

ueue<E>
Type Param

eters:
E - the type of elem

ents held in this collection

A
ll Superinterfaces:

Collection<E>, Iterable<E>

A
ll K

now
n Subinterfaces:

BlockingD
eque<E>, BlockingQ

ueue<E>, D
eque<E>

A
ll K

now
n Im

plem
enting C

lasses:
A

bstractQ
ueue, A

rrayBlockingQ
ueue, A

rrayD
eque, ConcurrentLinkedQ

ueue, D
elayQ

ueue,
LinkedBlockingD

eque, LinkedBlockingQ
ueue, LinkedList, PriorityBlockingQ

ueue, PriorityQ
ueue,

SynchronousQ
ueue

public interface Queue<E>
extends Collection<E>

A collection designed for holding elem
ents prior to processing. Besides basic Collection operations, queues

provide additional insertion, extraction, and inspection operations. Each of these m
ethods exists in tw

o form
s:

one throw
s an exception if the operation fails, the other returns a special value (either null or false,

depending on the operation). The latter form
 of the insert operation is designed specifically for use w

ith
capacity-restricted Queue im

plem
entations; in m

ost im
plem

entations, insert operations cannot fail.

Throw
s exception

Returns special value

Insert
add(e)

offer(e)

R
em

ove
remove()

poll()

Exam
ine

element()
peek()

Q
ueues typically, but do not necessarily, order elem

ents in a FIFO
 (first-in-first-out) m

anner. A
m

ong the
exceptions are priority queues, w

hich order elem
ents according to a supplied com

parator, or the elem
ents'

natural ordering, and LIFO
 queues (or stacks) w

hich order the elem
ents LIFO

 (last-in-first-out). W
hatever the

ordering used, the head of the queue is that elem
ent w

hich w
ould be rem

oved by a call to remove() or
poll(). In a FIFO

 queue, all new
 elem

ents are inserted at the tail of the queue. O
ther kinds of queues m

ay
use different placem

ent rules. Every Queue im
plem

entation m
ust specify its ordering properties.

The offer m
ethod inserts an elem

ent if possible, otherw
ise returning false. This differs from

 the
Collection.add m

ethod, w
hich can fail to add an elem

ent only by throw
ing an unchecked exception. The

offer m
ethod is designed for use w

hen failure is a norm
al, rather than exceptional occurrence, for exam

ple,
in fixed-capacity (or "bounded") queues.

The remove() and poll() m
ethods rem

ove and return the head of the queue. Exactly w
hich elem

ent is
rem

oved from
 the queue is a function of the queue's ordering policy, w

hich differs from
 im

plem
entation to

im
plem

entation. The remove() and poll() m
ethods differ only in their behavior w

hen the queue is em
pty:

the remove() m
ethod throw

s an exception, w
hile the poll() m

ethod returns null.

The element() and peek() m
ethods return, but do not rem

ove, the head of the queue.

The Queue interface does not define the blocking queue m
ethods, w

hich are com
m

on in concurrent
program

m
ing. These m

ethods, w
hich w

ait for elem
ents to appear or for space to becom

e available, are
defined in the BlockingQueue interface, w

hich extends this interface.

Queue im
plem

entations generally do not allow
 insertion of null elem

ents, although som
e im

plem
entations,

such as LinkedList, do not prohibit insertion of null. Even in the im
plem

entations that perm
it it, null

should not be inserted into a Queue, as null is also used as a special return value by the poll m
ethod to

indicate that the queue contains no elem
ents.

Queue im
plem

entations generally do not define elem
ent-based versions of m

ethods equals and hashCode but
instead inherit the identity based versions from

 class Object, because elem
ent-based equality is not alw

ays
w

ell-defined for queues w
ith the sam

e elem
ents but different ordering properties.

This interface is a m
em

ber of the Java Collections Fram
ew

ork.

Since:1.5
See A

lso:
Collection, LinkedList, PriorityQueue, LinkedBlockingQueue, BlockingQueue,
ArrayBlockingQueue, LinkedBlockingQueue, PriorityBlockingQueue

M
ethod Sum

m
ary

 boolean
add(E e)
 Inserts the specified elem

ent into this queue if it is possible to do so im
m

ediately w
ithout

violating capacity restrictions, returning true upon success and throw
ing an

IllegalStateException if no space is currently available.
 E

element()
 Retrieves, but does not rem

ove, the head of this queue.
 boolean

offer(E e)
 Inserts the specified elem

ent into this queue if it is possible to do so im
m

ediately w
ithout

violating capacity restrictions.
 E

peek()
 Retrieves, but does not rem

ove, the head of this queue, or returns null if this queue is
em

pty.
 E

poll()
 Retrieves and rem

oves the head of this queue, or returns null if this queue is em
pty.

 E
remove()
 Retrieves and rem

oves the head of this queue.

